If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-81x=0
a = 64; b = -81; c = 0;
Δ = b2-4ac
Δ = -812-4·64·0
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-81}{2*64}=\frac{0}{128} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+81}{2*64}=\frac{162}{128} =1+17/64 $
| 21=6r+r | | 5=-3x+36 | | 17+2x÷2+3x-1÷5=0 | | 6m+4=18 | | 15=x+21 | | 1.5=0.5÷x | | -6a+4(7+3a)=2(1+4a) | | 4(4x+4)=64 | | 5/4y=5/6 | | 2(x=7)=28 | | |4x-10|=22 | | 1/300+1/200=1/x | | x^2+11=144 | | 28=t-50 | | -20=z-9 | | 7^x-1^2=100 | | 2bb=6 | | 6(x+8)=37 | | 6x+15+4x+35=180 | | |4x-8|=-28 | | 2y^2=6y-95 | | 6(x+8)=34 | | s+23=19 | | -17=4s-1 | | 4x-9=3x-23 | | v^2=12+v | | -18-6y=7(4y+3) | | 10x-9=6x+2 | | 5x+4+8x-11=180 | | p-28=-13 | | 3/4x-5=1/2x+2 | | 10=1/2t+18 |